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        solutions of the neutral functional difference equation 
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I.  INTRODUCTION 

In this paper, sufficient conditions are obtained so that every solution of 

   
(n ) (n ) .

( p y ) (y ) f
m

n n n n
y q G

 
                                (1.1) 

oscillates or tends to zero or ±∞ as n → ∞, where ∆ is the forward difference operator  given by ∆xn=xn+1 − xn ,   

pn, qn and fn are infinite sequences of realnumbers with qn≥0,G∈C(R, R). 

Further we assume {τ (n)}, {σ(n)} are monotonic increasing and unbounded sequences such that τ  

(n) ≤ n, σ(n) ≤ n for every  n. Different ranges of {pn}are considered. The positive integer m can take both odd 

and even values.   Let N1 be a fixed nonnegative integer. Let N0 = min{τ (N1), σ (N1)}. By a 

solution of (1.1), we mean a real sequence {yn}which is defined for all positive 

integer n ≥ N0 and satisfies (1.1) for n ≥ N1. Clearly if the initial condition 
 

yn = an  for N0 ≤ n ≤ N1 + m − 1                                                            (1.2) 
 

is given then the equation (1.1) has a unique solution satisfying the given initial  condition  (1.2). 

A solution {yn} of  (1.1)  is said to be oscillatory if for every positive 
integer n0 > N1, there exists n ≥ n0 such that  yn yn+1 ≤ 0, otherwise {yn} is 

said to be non-oscillatory. The function G is said to have linear growth (or to be 

linear) at infinity, if limx→∞ |G(x)|/x is a positive constant. G is super-linear  if 

limx→∞ |G(x)|/ x = ∞, and G is sub-linear if limx→∞ |G(x)|/x = 0. 
 In the sequel, we shall need the following conditions. 
(H0) G  is nondecreasing and xG(x) > 0 for all real x ≠ 0. 

(H1) 
0

q nn


 


 

(H2) There exists a bounded sequence {Fn} such that ∆mFn =  fn  and 
limn→∞ Fn = 0. 

Remark 1.1. If the condition | 
1

0

m
f
n

nn n





   is satisfied, then (H2) holds. 

Indeed, if we define 

   
( 1 )

.

( 1)
( 1)

(m 1) !

m

m

n j

j n

F j n m f








   


  

Then ∆
m

Fn = fn and limn→∞ Fn =  0. Thus (H2) holds. 

We assume that p n satisfies one of the following conditions in this paper. 

(A1) 0 ≤  pn ≤  b< 1, (A2) – 1 <–b ≤ pn ≤ 0, 
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(
    

(A3) –b2 ≤ pn ≤ –b1  <–1, (A4) 1 < b1  ≤ pn  ≤ b2 ,  

(A5) 0 ≤ pn  ≤ b2 ,  (A6) – b2  ≤ pn  ≤ 0, 

(A7) 1 ≤ pn  ≤ b2 ,  
where b, b 1 ,  b2 are positive real numbers. 

   In recent years, several papers on oscillation of solutions of neutral delay differ- 

ence equations have appeared,  see [1]−[13] and the references cited there in. 

Sufficient conditions for oscillation of 

 

         ∆
m
 (yn –  pnyn−k)+ qnG(yn−l) = fn.                                 (1.3) 

 

 are studied in [10]. In that paper, p n is confined to (A2) only and G is restricted 

with a sub-linear condition 

                  
0

.
( )

C d u

G u



                                         (1.4) 

      In [12] the authors find sufficient conditions for the oscillation of solutions of neutral 

equation 

   (y p y ) q 0 ,
m

n n n l n n k
y


 
                 (1.5) 

 

where  α  < 1,  is a quotient of odd integers and  p n satisfies (A1) or (A2). Moreover, we  observe that the existing 

 papers  in the literature do  not  have much  to offer when  

p n satisfies (A4), (A6) or (A7). In this direction we find that, the authors in  [5] 

have  obtained  sufficient  conditions  for the oscillation  of solutions of the equation 

(y p y ) q ( ) 0 ,
m

n n n k n n r
G y

 
                                                         (1.6) 

with (A4) or (A7) and  presented some  results which are proved to be wrong  (see 

[1, page 72] for the results and counter example). 

In a  recent  publication  [1],  the authors considered (1.1) and most of  the  results  hold for G  satisfying 

 

 (H3)  inflim │u│ 0
)(

 
u

uG
 

Due  to  this  assumption  these  results  cannot  be applied to (1.1) when G(x ) = xα 

and  α < 1. To make  things more clear, consider  the neutral  equation  (1.1)  in  the 

following particular case. 

 

Example 1.2. 

              3

1 39

1 1
(y y ) 2 ,

8 2

m n

n n n
y
 





 
                     (1.7) 

where  m is any integer ≥ 1, α is  the quotient  of  any two odd integers. clearly 

yn = 2
−3n

 is a solution of (1.7), which  tends  to zero as  n → ∞. If α <  1 then in 

this  case, G(x ) = xα, does  not satisfy (H3) and  the results in [1] fails  to answer the 

behaviour  of  solutions of this  neutral difference equation.  The  above  example  shows  that  due  to the 

restriction  (H3) in [1],  a class  of  neutral  difference  equations  are left  out. Hence, we  

remove this restriction  in the  present  

work to accomodate the class of sublinear equations. Moreover, our results hold 
true for homogeneous equations associted with (1.1). 

 

II. MAIN RESULT 
To begin with, we  state a  lemma, that  would  be  useful for our work. The 

following lemma which can be easily proved, generalizes [4, Lemma 2.1]. 
 

Lemma 2.1. Let {fn}, {qn} and {pn} be sequences of real numbers defined for 

n ≥ N0 > 0 such that 

   fn = qn – pn q τ(n) , n ≥ N1 ≥  N0 , 
where  τ (n) ≤ n, is member of a monotonic increasing unbounded  sequence. Suppose    that   pn satisfies  
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one of conditions  (A2), (A3) or  (A5). If qn  >  0  for n ≥ N0 , lim in f 0
n n

q
 

  

 and lim
n n

f L
 

  exists then L = 0. 
 

Theorem 2.2. Let m ≥ 2. Suppose  that,  pn  satisfies  one of  the conditions (A1) or 

(A2). If (H0), (H1) and (H2) hold, then every  solution of (1.1) oscillates or tends 
to zero as n → ∞. 

Proof. Let y = yn be  an non-oscillatory solution of  (1.1) for n ≥  N1 . Then yn > 0 

or yn < 0. Suppose  yn > 0 eventually. There  exits positive  integer n0 ≥ N1 > 0 

such that yn  > 0 ,  
( )n

y


 > 0, and  
( )n

y


 > 0  for n ≥ n0.. For simplicity of  notation, 

define for n ≥ n0 , 

        zn = yn – pnyτ(n).                                                      (2.1) 
Set, 

                wn = zn – Fn.          (2.2) 

Then using (2.1)–(2.2) in (1.1), we obtain 

   ∆mwn = – qnG(yσ(n)) ≤  0.         (2.3) 

 

Hence  wn, ∆wn, . . . ,  ∆
m−1

wn are  monotonic  and  single  sign for  n  ≥ n1 ≥  n0. 

 

 
 

 Then 

lim n→∞ wn =  λ, where −∞ ≤ λ ≤ +∞. We  claim  that  yn is  bounded. If  not  then 

there  exists  a sub  sequence  
k

n
y such that 

 

 

   nk → ∞, 
k

n
y  → ∞ as k → ∞, 

and 

   y(nk) = max{yn : n1 ≤  n ≤ nk}.            (2.4) 

We  may choose nk large enough so  that for  τ  (nk) ≥ n1 , σ (nk) ≥ n1. Then from 

(H2) it follows that, for 0 <  , we  can find a positive integer n2 such that, for 

k ≥ n2 ≥ n1 implies 
k

n
F  , for some constant γ > 0. 

Consider the first case that pn satisfies (A1). Hence for k ≥ n2, we have   
 

(1 ) .
k k

n n
w y b     

If  we  take  the  limit k → ∞, then we  find  lim
n  

 wn = ∞, because  of   the  monotonic 

nature  of  wn. Hence  wn > 0 , ∆wn > 0 for  n ≥ n2 ≥ n1. Since  ∆
m

 wn ≡ 0 and 

is  non-positive,  it  follows from (2.3)  that  ∆
m−1

yn > 0 for n ≥ n3 > n2. Choose 

0 <  <
3

n
w  . Then  by  (H2) we  have |Fn| <   for  n > n4 > n3. Hence for n > n4, 

wn < yn − Fn < yn +  ε, which  implies  that   0 < 
3

n
w   < wn −  < yn . Setting 

un = wn −   , n ≥  n4, we  obtain 
 

0 < un < yn , ∆un = ∆wn > 0,  ∆
m−1

un = ∆
m−1

wn > 0, 

 

and 

              ∆mun = ∆
mwn = −qnG(

( )n
y


) ≤  0. 

Summing the above from n5 to n −  1 and using (H0) we obtain 
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5

5

5 5
5

11 1

(k )

11

(n )

(y )

          < (u )

nm m

n n kk n

nm

n kk n

u u q G

u G q





 







   

 





 

 

Hence,  taking  the limit n → ∞ we  obtain  ∆
m−1

un < 0 by (H1),  contradicting 

∆
m−1

un > 0 for large n. Hence our claim holds. 

  Cosider the other case, that is, (A2) is satisfied. Then for k ≥ n2, we have 

.
k k

n n
w y    

Taking  the  limit k → ∞, we  find  lim
n n

w
 

 = ∞. Proceeding  as in  the first case 

for  (A1),  we  prove  that  wn > 0, ∆wn > 0 and  ∆
m−1

wn > 0 for n > n2. Since  wn 

is increasing, we have, for n ≥ n4 > n3 

(1 − b)wn ≤  wn + pnwτ(n) 

  = yn − Fn − pn pτ(n) yτ(τ(n)) − pnFτ(n) 

   ≤  yn − Fn − pnFτ(n)                                                                                                       (2.5) 

For 0 < < (1 −  b) 
3

n
w , there  exists  n4 > n3 such  that  |Fn| < /2, for n ≥ n4. 

 
 

From (2.5) it follows that 

(1 − b) 
3

n
w < 1 − b)wn ≤  yn + / 2   – pn  /2 < yn + 

For   n ≥ n5 > n4, because  wn  is  increasing  and  −pn < 1. Setting  un = (1 −  b)wn −  

for n > n5, we obtain 

0 < (1 − b)wn3  −  < un < yn, 

∆un = (1 −  b)∆wn > 0, ∆
m−1

un = (1 − b)∆
m−1

wn > 0 

and 

   ∆mun = (1 − b)∆
mwn = −(1 − b)qnG(yσ(n)).             (2.6) 

Summing (2.6) from n5 to n −  1 we obtain 

   
5

5

5 5
5

11 1

(k )

11

(n )

(1 b ) (u )

          < (1 b ) (u ) ,

nm m

n n kn

nm

n kn

u u q G

u G q





 



    

  





 

because un is  increasing. Hence  ∆
m−1

un < 0  for  large n, due to (H1), a contradiction. 

 

Thus,  yn is  bounded. Consequently,  whether  pn satisfies (A1)  or  (A2),  wn is 

bounded and hence 

                                     (−1)
m+k

∆
k

wn < 0, k = 1, 2, ..., m − 1,             (2.7) 

for n > n6 > n1. If  lim infn→∞ yn = λ > 0  then  yn > µ > 0 for n > n7 > n6. 

Hence from (2.3) we get 

   
7

7

11 1

( ) ( )
( ) .

nm m

n n kk n
w w G q

 


 


      

Taking limit n → ∞ and  using  (H1), we  obtain  ∆
m−1

wn → −∞ as n → ∞, a 

contradiction  to  (2.7). We  conclude  that  lim inf  yn = 0. Since wn is bounded, 

lim 
n

wn  exists  due  to  (2.7) whether m is  odd  or  even. Inview of (H2) and (2.2), 

we  find  that lim 
n

 zn exists. Applying lemma 2.1 to (2.1), we obtain lim n→∞ zn =  

0. If  (A1) holds  then  for  n > n1  ,   zn > yn – by τ(n) implies  yn ≤  zn + by τ(n). Hence 

      lim  sup n→∞ yn < lim n→∞ zn +  b  lim  sup n→∞ yτ(n) ,  that  is,  (1 −  b)  lim  supn→∞ yn ≤ 

0.  Consequently, limn→∞ yn = 0. 

 

If (A2) holds then yn ≤  zn for n ≥ n1. Hence limn→∞ yn = 0. 
If yn < 0, for n > n0 then we set xn = −yn in (1.1) for n ≥  n0 to obtain 
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n0    
∗
 

∗
 

 
( ) ( )

( - ) ( )
m

n n n n n n
x p x q G x f

 
                                                                                            (2.8) 

where 

 

 
, ( ) G( ).n nf f G                                                                                                          (2.9) 

Further, 

 

  
,
    im p lie s    ( F ) .

m

n n n n
F F f                                                                                            (2.10) 

Then  it  can  be  easily verified  that G satisfy  the condition 
 
corresponding  to 

the  condition  (H0) satisfied  by  G . Also, F satisfy  the  condition 
 
 corresponding 

 

to  the  condition  (H2)  satisfied  by  F . Proceeding  as  in  the proof for  the case yn > 0 

we   obtain  lim  n→∞ xn = 0,  that  is  lim  n→∞ yn  =  0. Thus, the  theorem  is  proved  

 
As a consequence of Theorem 2.2 we get the following. 

 

 

 

Corollary 2.3. Under the assumptions of t heorem  2.2, every nonoscillatory s olu- 

tion of (1.1) tends to  zero  as n → ∞ and hence, every unbounded  solution of (1.1) 

oscillates. 

 

Remark 2.4. Theorem 2.2 remains true if fn ≡ 0. 

 

Theorem 2.5. Suppose that (H0) and (H2) hold. Further assume that the following 

conditions hold. 
   (H4) For u > 0 and v > 0, there exists β > 0 such that 

 

G(u) + G(v) ≥  βG(u + v)  and  G(u)G(v) ≥  G(uv). 

 

   (H5) G(−x ) = −G(x).  

   (H6) 
0

* *

( )
  m in [ , ].

n n n nn
q w here q q q





    

   (H7) σ(τ (n)) = τ (σ(n)) 

If  pn  satisfies (A6) then every solution of ( 1.1 ) oscillates  or  tends  to  zero as  n → ∞.  
 

Proof. Proceeding as in the previous proof, we show limn→∞ wn = l and −∞ ≤ l < 

0 is not possible. We  may  observe that  lim  zn = lim wn and yn ≤  zn due to (H2) 

and (A6) respectively. Hence l = 0 implies limn→∞ yn = 0. Assume, if possible, 

that 0 < l ≤ ∞. Hence  zn > λ > 0  and ∆
m−1

wn > 0 for n ≥ n2 > n1. Then using 

(H0), (H4)–(H7), we deduce from (2.3) that 

0 = ∆
mwn + qnG(yσ(n)) + G(−pσ(n) )[∆mwτ(n) + qτ(n)G(yτ(σ(n)))] 

   ≥  ∆
m

wn + G(b2)∆
m

wτ(n) + β
*

n
q G(zσ(n)) 

   ≥  ∆
m

wn + G(b2)∆
m

wτ(n) + βG(λ) *

n
q . 

Summing the above inequality and using (H6) we get 

   ∆m−1wn + G(b2)∆
m−1wτ(n) < 0 

 

for large n, a contradiction. If yn < 0,  eventually  for  large  n, then  we  may  proceed 

with xn = −yn  as  in  the proof  of  the Theorem 2.2 and note that, xn is a positive 

solution  of (2.8) with (2.9) and  (2.10). Further, we note that, (H5) implies  G= 
G . Then proceeding  as above,  in the proof  for  the case  yn>0, we  prove  that 

lim 0
n n

y
 

  and complete the proof of the theorem. 
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Remark 2.6. (H6) implies (H1) but not conversely. 

        

Remark 2.7. The prototype of the function G  satisfying (H0), (H4), and (H5) is 

G(u) = (β + |u|µ)|u|λsgn(u),  where  λ > 0, µ > 0, λ + µ ≥  1, β ≥ 1. For verification 

we may take help of the well known inequality (see [14, p. 292]) 

1

( ) ,         0 1,

2 ( ) ,   1 .     

p

p p

p p

u v p
u v

u v p


   
  

 

 

Definition 2.8. For any positive integer n ≥ n0, define 
1

( )n


 = {m : m is an integer ≥ n and τ (m) = n}. 

Theorem 2.9. Suppose that m is odd and ( H0 ), ( H1 ) hold. If pn satisfies ( A7 ) 
then every nonoscillatory solution of 

    ∆m
(yn −  pnyτ(n))+ qnG(yσ(n)) = 0            (2.11) 

tends to ± ∞.  
 

 

Proceeding as in the proof of theorem 2.2, we deduce from (2.3) that 

   
1

lim ,    .
m

n
n

z  


 

        

Suppose  that −∞ <  λ <  ∞. Then (2.7)  holds and we  can show  lim  infn→∞yn = 0,  

as  in the proof  of  theorem  2.2. Then there exists a subsequence 
k

n
y  such that 

nk → ∞ and 
k

n
y  → 0 as k → ∞. As 

k k
n n

z y  ,  we  have  lim  sup 
k

n
z  ≤  0. Hence 

λ ≤ 0. Similarly 

1 11 2( ) ( ) ( ) k kk k k
n nn n n

z y p y b y
   

                                                                                          (2.12) 

    This implies lim infn→∞ 
1 ( )

k
n

z
 

 ≥ 0. Hence λ ≥ 0. Thus λ = 0. Consequently, 

    (−1)
m+k

∆
k

zn < 0, k = 0, 1, ..., m − 1,for large n,and limn→∞ ∆
k

zn = 0, k = 

0, 1, ..., m − 1. Since m is odd, ∆zn < 0 for large n. Hence zn > 0 for n ≥ n2. 

This implies yn > yτ(n) which further implies lim infn→∞ yn > 0, a contradiction. 

Thus, λ = −∞. From (2.12), we have 
2

1
 1

k kn ny Z
b

   . This implies that 

limn→∞ yn = ∞. Thus the proof of the theorem is complete. 

 
Remark 2.10. Al l the above results  hold  when  G is linear, super-linear, or sub- 

linear. Next, we give few examples to establish the significance of our results. 

 

Example 2.11. Consider the neutral equation 

   1 1 ( 2 n ),

1 2

1
2

2

m

n n n
y y n y n

   

 

 
    

 

           (2.13) 

Where  m ≥ 2, α  is  a  positive rational, being  the quotient  of two odd integers.  In  this 

case, 1

2n
p    satisfies (A1).  Further,  qn = n

−1, G(x ) = x
α
 and   fn = n

−12α(2−n). It 

is clear that 
0

1m

nn n
n f

 


 

. Hence by Remark 1.1,it follows that 

  ( 1 ) (m 1) 1 ( 2 j)

(m 1) !
( 1) 2

m

n

j n

F j n m j




   





   
. 

Obviously,  Fn  satisfies (H2). Clearly,  the equation  (2.13 )  satisfies  all  the  conditions 

of  Theorem 2.2. Hence  every  non-oscillatory  solution  tends  to zero  as  n → ∞. In 

particular   yn = 2
−n

 is  a non-oscillator y solution of (2.13),which tends to zero  as 

n → ∞. However,  if α < 1, then  the  results of  [ 1] cannot be  applied  to  the  neutral 

difference  equation  ( 2.13 ), because ( H3 )  is  not  satisfied.  Again if α ≥  1 then results 
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1 

of  [10,12]  fail, due to the assumption of a sublinear condition on G, in these papers. 

 

Example 2.12. Consider the neutral equation 

  
1 1 1 ( 2 )

1 2

1
1 2 2 ,

2

mm n m n

n n n
y y n y n

      

 

 
      

 

             (2.14) 

where  m ≥ 2,  α is a positive  rational, which  is the quotient of  two odd inte- 

gers. Here, 1

2n
p    satisfies (A2). Also, qn = n−1, G(x) = xα

 and fn = 

(−1)m2−n−m+1
 + n

−12α(2−n). Easily, we can verify that, 
0

1m

nn n
n f

 


   

and the  equation  (2.14)  satisfies all the conditions  of  Theorem   2.2  for (A2).  Hence 

yn = 2
−n

 is a positive solution of  ( 2.14 ),  which  tends  to  zero as  n → ∞. However, 

 

 

if α < 1, then the  results of  [ 1] cannot  be  applied  to this  equation,  because  (H3) is 

not satisfied. Again if α ≥ 1 then results of  [10,12] fail as G  is  sublinear there. 

Example 2.13. Consider the neutral equation 

      
( 3 3 n )

9 3

2 1 3

1 1 2
8 1 1 2 (1 ) 2 ,

2

mm m n

n n n
y y y

n n









 
                 (2.15) 

 

where  m ≥ 2, α is a positive  rational,  which  is  the quotient of  two  odd integers. 

In  this case,  pn = −8, satisfies (A3). Again,  qn = n
−1, * 1

, ( n )
m i n [ ] .

n n n
q q q


   

Further,  we find t hat ( 3 3 n )

3

9 31 2

2
( )  ( 1) (1 2 )(1 ) 2 .

m m n

n n
G x x a n d f

 
       

The above  neutral  equation satisfies all the conditions of  Theorem  2.5. Hence  yn =2−3n 

is  a  non-oscillatory  solution  of  ( 2.15 ),  which  tends   to  zero   as   n → ∞. However, 

if  α < 1, then  the results of [ 1 ] cannot be applied  to  this equation,  because ( H3 ) is 

not  satisfied. Again if α ≥  1 then  results of [10,12] fail as G  is sublinear there. 

 

Before  we  close we  give  our final comments which  may  be  helpful for  further 

research. 

III. FINAL COMMENTS 
In  this  article, our Theorem  2.2 deals  with  the range (A1) or (A2) for  p n. Can we  get  

some result like Theorem 2.2 with (A1) and (A2) replaced bythe conditions 0 ≤ pn ≤ 1 and −1 ≤ pn ≤ 0  

respectively. Further, when pn lies in (A6), wehavedoneTheorem 2.5 under (H6) which is stronger than 

( H1).Someone  may attempt with a changed  technique  and  method  to  do  a result similar to Theorem 

2.5 under  the weaker condition (H1). Our  result  Theorem 2.9  should   be  improved. An  attempt  may  

be made  to  do it  for  the  non-homogeneous  neutral  equation  (1.1). Most significantly, we  find  

majority of  the results including  this paper,  assume qn to have fixed sign. Results with qn changing sign 

(see [ 7 ] for  first order  neutral difference  equation ) are rare. One  may  extend  and  improve  the  

existing results  on  qn changing sign  to  higher  order  equations with m ≥ 2 
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